Nanocrystalline grain boundary engineering: Increasing R3 boundary fraction in pure Ni with thermomechanical treatments

نویسندگان

  • David B. Bober
  • Mukul Kumar
  • Timothy J. Rupert
چکیده

Grain boundary networks should play a dominant role in determining the mechanical properties of nanocrystalline metals. However, these networks are difficult to characterize and their response to deformation is incompletely understood. In this work, we study the grain boundary network of nanocrystalline Ni and explore whether it can be modified by plastic deformation. Mechanical cycling at room temperature did not lead to structural evolution, but elevated temperature cycling did alter the grain boundary network. In addition to mechanically driven grain growth, mechanical cycling at 100 C led to a 48% increase in R3 boundaries, determined with transmission Kikuchi diffraction. The extent of boundary modification was a function of the number of applied loading cycles and the testing temperature, with more cycles at higher temperatures leading to more special grain boundaries. The results presented here suggest a path to grain boundary engineering in nanocrystalline materials. 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes

Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had n...

متن کامل

Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic dis...

متن کامل

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

High-Cycle Fatigue of Nickel-Based Superalloy ME3 at Ambient and Elevated Temperatures: Role of Grain-Boundary Engineering

High-cycle fatigue (HCF), involving the premature initiation and/or rapid propagation of cracks to failure due to high-frequency cyclic loading, remains a principal cause of failures in gas-turbine propulsion systems. In this work, we explore the feasibility of using “grain-boundary engineering” as a means to enhance the microstructural resistance to HCF. Specifically, sequential thermomechanic...

متن کامل

Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions

Article history: Received 15 June 2016 Received in revised form 9 July 2016 Accepted 9 July 2016 Available online 20 July 2016 Multicomponent alloying can be utilized to enhance the thermal stability of nanocrystalline alloys. The grain boundary energy can be reduced significantly via both bulk and grain-boundary high-entropy effects with increasing temperature at/within the solid solubility li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015